SiaFind Pan-Specific Lectenz® Kit
$350.00 – $475.00
Product | SKU | MG | Price |
---|---|---|---|
SiaFind™ Pan-Specific Lectenz® 2.0 Kit | SK0502 | 1 | $350 |
SiaFind™ Pan-Specific Lectenz® 2.0, Biotinylated Kit | SK0502B | 1 | $400 |
SiaFind™ Pan-Specific Lectenz® Kit | SK0501 | 1 | $350 |
SiaFind™ Pan-Specific Lectenz®, Biotinylated Kit | SK0501B | 1 | $400 |
SiaFind™ Pan-Specific Lectenz® SureLight™ 488 Kit (2 week lead time) | SK0501F | 1 | $475 |
Custom Order | Inquire |
Lectenz® are a novel class of lectin-like, enzyme-derived glycan-targeting affinity reagents engineered by computationally-guided directed evolution. The reagents are highly purified recombinant proteins, each designed to bind a specific glycan structure, and have advantages over naturally occurring lectins in rapid detection and enrichment of glycoconjugates.
SiaFind™ Pan-Specific Lectenz® 2.0 Kits (Cat #SK0502 and SK0502B) contain a high-performance sialic acid affinity reagent engineered from the original SiaFind™ Pan-Specific Lectenz® (Cat #SK0501 and SK0501B) for the robust detection, separation, or enrichment of sialoglycans terminating in Siaα2,3Gal, Siaα2,6Gal, and Siaα2,8Sia commonly found in glycoconjugates (glycoproteins, glycolipids, and oligo- or polysaccharides). It has high affinity and specificity towards sialoglycans in a linkage independent manner (pan-specific). Each kit also includes a 5X binding buffer to ensure maximum reagent specificity and ease of use.
Supplementary Information
SiaFind™ Pan-Specific Lectenz® 2.0 has a molecular mass of about 57 kD and works as a monomer without bivalent metal ions. It is 8xHis-tagged at its N-terminus, and an anti-polyhistidine antibody, or in the case of the biotinylated version, a streptavidin conjugate can be used for detection. The 8xHis tag may be removed by FasTEV™ (Cat #GE0501), a TEV protease with enhanced stability and catalytic activity.
The original SiaFind™ Pan-Specific Lectenz® has a molecular mass of about 77 kD and works as a monomer without bivalent metal ions. It is 6xHis-tagged at its N-terminus, and an anti-polyhistidine antibody, or in the case of the biotinylated version, a streptavidin conjugate can be used for detection.
Form and Storage
The SiaFind™ Pan-Specific Lectenz® 2.0 are supplied lyophilized in a storage buffer (50 mM EPPS, 200 mM NaCl, pH 7.5) and should be reconstituted in 100 μL molecular grade water to yield a 10 mg/mL solution. Concentration is determined by spectrophotometry using E1% 10.4.
The original SiaFind™ Pan-Specific Lectenz® are supplied lyophilized in a storage buffer (50 mM EPPS, 100 mM NaCl, pH 7.5) and should be reconstituted in 100 μL molecular grade water to yield a 10 mg/mL solution. Concentration is determined by spectrophotometry using E1% 12.7.
Once reconstituted, store at 4°C for up to 5 days or -20°C for up to 6 months. Aliquoting is recommended to avoid repeated freeze-thaw cycles.
All 5X buffers should be diluted to 1X with ultrapure water. For instance, to make 250 mL, add 50 mL of any 5X buffer to 200 mL water and mix by inversion. All buffers may be stored at 4 to 25°C.
Western Blot
Citations
1. Dabelsteen S, Pallesen EMH, Marinova IN, Nielsen MI, Adamopoulou M, Rømer TB, Levann A, Andersen MM, Ye Z, Thein D, Bennett EP, Büll C, Moons SJ, Boltje T, Clausen H, Vakhrushev SY, Bagdonaite I, Wandall HH. Essential Functions of Glycans in Human Epithelia Dissected by a CRISPR-Cas9-Engineered Human Organotypic Skin Model. Dev Cell. 2020 Sep 14;54(5):669-684.e7. doi: 10.1016/j.devcel.2020.06.039. Epub 2020 Jul 24. PMID: 32710848; PMCID: PMC7497784.
2. Büll C, Nason R, Sun L, Van Coillie J, Madriz Sørensen D, Moons SJ, Yang Z, Arbitman S, Fernandes SM, Furukawa S, McBride R, Nycholat CM, Adema GJ, Paulson JC, Schnaar RL, Boltje TJ, Clausen H, Narimatsu Y. Probing the binding specificities of human Siglecs by cell-based glycan arrays. Proc Natl Acad Sci U S A. 2021 Apr 27;118(17):e2026102118. doi: 10.1073/pnas.2026102118. PMID: 33893239; PMCID: PMC8092401.
3. Nason R, Büll C, Konstantinidi A, Sun L, Ye Z, Halim A, Du W, Sørensen DM, Durbesson F, Furukawa S, Mandel U, Joshi HJ, Dworkin LA, Hansen L, David L, Iverson TM, Bensing BA, Sullam PM, Varki A, Vries E, de Haan CAM, Vincentelli R, Henrissat B, Vakhrushev SY, Clausen H, Narimatsu Y. Display of the human mucinome with defined O-glycans by gene engineered cells. Nat Commun. 2021 Jul 1;12(1):4070. doi: 10.1038/s41467-021-24366-4. PMID: 34210959; PMCID: PMC8249670.
4. Canals Hernaez D, Hughes MR, Li Y, Mainero Rocca I, Dean P, Brassard J, Bell EM, Samudio I, Mes-Masson AM, Narimatsu Y, Clausen H, Blixt O, Roskelley CD, McNagny KM. Targeting a Tumor-Specific Epitope on Podocalyxin Increases Survival in Human Tumor Preclinical Models. Front Oncol. 2022 May 4;12:856424. doi: 10.3389/fonc.2022.856424. PMID: 35600398; PMCID: PMC9115113.
5. Ahmad A, Georgiou PG, Pancaro A, Hasan M, Nelissen I, Gibson MI. Polymer-tethered glycosylated gold nanoparticles recruit sialylated glycoproteins into their protein corona, leading to off-target lectin binding. Nanoscale. 2022 Sep 22;14(36):13261-13273. doi: 10.1039/d2nr01818g. PMID: 36053227; PMCID: PMC9494357.
6. Sørensen DM, Büll C, Madsen TD, Lira-Navarrete E, Clausen TM, Clark AE, Garretson AF, Karlsson R, Pijnenborg JFA, Yin X, Miller RL, Chanda SK, Boltje TJ, Schjoldager KT, Vakhrushev SY, Halim A, Esko JD, Carlin AF, Hurtado-Guerrero R, Weigert R, Clausen H, Narimatsu Y. Identification of global inhibitors of cellular glycosylation. Nat Commun. 2023 Feb 20;14(1):948. doi: 10.1038/s41467-023-36598-7. PMID: 36804936; PMCID: PMC9941569.
7. Lin CL, Sojitra M, Carpenter EJ, Hayhoe ES, Sarkar S, Volker EA, Wang C, Bui DT, Yang L, Klassen JS, Wu P, Macauley MS, Lowary TL, Derda R. Chemoenzymatic synthesis of genetically-encoded multivalent liquid N-glycan arrays. Nat Commun. 2023 Aug 28;14(1):5237. doi: 10.1038/s41467-023-40900-y. PMID: 37640713; PMCID: PMC10462762.
8. Mijdam R, Bijnagte-Schoenmaker C, Dyke E, Moons SJ, Boltje TJ, Nadif Kasri N, Lefeber DJ. Sialic acid biosynthesis pathway blockade disturbs neuronal network formation in human iPSC-derived excitatory neurons. J Neurochem. 2023 Aug 31. doi: 10.1111/jnc.15934. Epub ahead of print. PMID: 37650222.
9. Orozco-Moreno M, Visser EA, Hodgson K, Hipgrave Ederveen AL, Bastian K, Goode EA, Öztürk Ö, Pijnenborg JFA, Eerden N, Moons SJ, Rossing E, Wang N, Haan N, Büll C, Boltje TJ, Munkley J. Targeting aberrant sialylation and fucosylation in prostate cancer cells using potent metabolic inhibitors. Glycobiology. 2023 Oct 17:cwad085. doi: 10.1093/glycob/cwad085. Epub ahead of print. PMID: 37847613.
10. Boelaars K, Goossens-Kruijssen L, Wang D, de Winde CM, Rodriguez E, Lindijer D, Springer B, van der Haar Àvila I, de Haas A, Wehry L, Boon L, Mebius RE, van Montfoort N, Wuhrer M, den Haan JMM, van Vliet SJ, van Kooyk Y. Unraveling the impact of sialic acids on the immune landscape and immunotherapy efficacy in pancreatic cancer. J Immunother Cancer. 2023 Nov;11(11):e007805. doi: 10.1136/jitc-2023-007805. PMID: 37940346; PMCID: PMC10632901.
11. Monti M, Milanetti E, Frans MT, Miotto M, Di Rienzo L, Baranov MV, Gosti G, Somavarapu AK, Nagaraj M, Golbek TW, Rossing E, Moons SJ, Boltje TJ, van den Bogaart G, Weidner T, Otzen DE, Tartaglia GG, Ruocco G, Roeters SJ. Two Receptor Binding Strategy of SARS-CoV-2 Is Mediated by Both the N-Terminal and Receptor-Binding Spike Domain. J Phys Chem B. 2024 Jan 18;128(2):451-464. doi: 10.1021/acs.jpcb.3c06258. Epub 2024 Jan 8. PMID: 38190651.
12. Huang L, Kondo Y, Cao L, Han J, Li T, Zuo B, Yang F, Li Y, Ma Z, Bai X, Jiang M, Ruan C, Xia L. Novel GNE missense variants impair de novo sialylation and cause defective angiogenesis in the developing brain in mice. Blood Adv. 2024 Feb 27;8(4):991-1001. doi: 10.1182/bloodadvances.2023011490. PMID: 38237079; PMCID: PMC10879683.
13. Boelaars K, Rodriguez E, Huinen ZR, Liu C, Wang D, Springer BO, Olesek K, Goossens-Kruijssen L, van Ee T, Lindijer D, Tak W, de Haas A, Wehry L, Nugteren-Boogaard JP, Mikula A, de Winde CM, Mebius RE, Tuveson DA, Giovannetti E, Bijlsma MF, Wuhrer M, van Vliet SJ, van Kooyk Y. Pancreatic cancer-associated fibroblasts modulate macrophage differentiation via sialic acid-Siglec interactions. Commun Biol. 2024 Apr 9;7(1):430. doi: 10.1038/s42003-024-06087-8. PMID: 38594506; PMCID: PMC11003967.
14. Elzinga J, Narimatsu Y, de Haan N, Clausen H, de Vos WM, Tytgat HLP. Binding of Akkermansia muciniphila to mucin is O-glycan specific. Nat Commun. 2024 May 29;15(1):4582. doi: 10.1038/s41467-024-48770-8. PMID: 38811534; PMCID: PMC11137150.
15. Hodgson K, Orozco-Moreno M, Goode EA, Fisher M, Garnham R, Beatson R, Turner H, Livermore K, Zhou Y, Wilson L, Visser EA, Pijnenborg JF, Eerden N, Moons SJ, Rossing E, Hysenaj G, Krishna R, Peng Z, Nangkana KP, Schmidt EN, Duxfield A, Dennis EP, Heer R, Lawson MA, Macauley M, Elliott DJ, Büll C, Scott E, Boltje TJ, Drake RR, Wang N, Munkley J. Sialic acid blockade inhibits the metastatic spread of prostate cancer to bone. EBioMedicine. 2024 Jun;104:105163. doi: 10.1016/j.ebiom.2024.105163. Epub 2024 May 20. PMID: 38772281; PMCID: PMC11134892.
16. Harris ES, McIntire HJ, Mazur M, Schulz-Hildebrandt H, Leung HM, Tearney GJ, Krick S, Rowe SM, Barnes JW. Reduced sialylation of airway mucin impairs mucus transport by altering the biophysical properties of mucin. Sci Rep. 2024 Jul 17;14(1):16568. doi: 10.1038/s41598-024-66510-2. PMID: 39019950; PMCID: PMC11255327.
17. Taniguchi T, Mogi K, Tomita H, Okada H, Mori K, Imaizumi Y, Ichihashi K, Okubo T, Niwa A, Kanayma T, Yamakita Y, Suzuki A, Sugie S, Yoshihara M, Hara A. Sugar-binding profiles of the mesothelial glycocalyx in frozen tissues of mice revealed by lectin staining. Pathol Res Pract. 2024 Oct;262:155538. doi: 10.1016/j.prp.2024.155538. Epub 2024 Aug 23. PMID: 39191196.