
Rev. 2025-06-17

O-GlcNAcase contents

Catalog #	Description	Size	M.W.	Purity	pH Range	Storage
GE0401	O-GlcNAcase	1,000 units, lyophilized	52,000	> 95%	6.0-9.0	-20°C, up to 6 months
BA0801	10X Reaction Buffer 4	1 mL			7.5	4 to 25°C

This product is for research use only and not for resale or for any use in the manufacture of a therapeutic or for any diagnostic purpose.

Product description: This product is a recombinant *O*-GlcNAcase or OGA (glycosyl hydrolase family GH84, EC 3.2.1.169), cloned from *Oceanicola granulosus* and expressed in *Escherichia coli* with an *N*-terminal 6xHis tag. This enzyme releases *O*-linked β -*N*-acetylglucosamine (GlcNAc) from serine and threonine residues of glycoproteins and glycopeptides.

This product does not contain any detectable activities of proteases, exo- β -N-acetylglucosaminidase, or other glycosidases.

Unit definition: One unit is defined as the amount of *O*-GlcNAcase required to catalyze the release of 1 nmole p-nitrophenol (pNP) from p-nitrophenyl-N-acetyl- β -D-glucosaminide (pNP-GlcNAc) per min at 37°C in 100 μ L 1X Reaction Buffer 4 (50 mM Tris-HCl, 100 mM NaCl, pH 7.5).

Activity assay: One unit of enzyme is added to 100 μ L of 500 μ M pNP-GlcNAc in 1X Reaction Buffer 4 at 37°C for 30 min, followed by addition of 100 μ L of a stop solution (0.2 M sodium borate, pH 9.8). Measure absorption at 405 nm on a plate reader.

Product reconstitution: Dissolve the lyophilized product in $100~\mu L$ of molecular grade water to make a 10,000~units/mL (Cat #GE0401) solution in 1X Reaction Buffer 4. Once reconstituted, store the enzyme at 4°C for up to 5 days or at -20°C for up to 3 months. Aliquoting is recommended to avoid repeated freeze-thaw cycles.

Reference: Schimpl M, et al. Biochem J. 2010 Nov 15;432(1):1-7. PMID: 20863279.