


Rev. 2025-03-25

PNGase F-II contents

Catalog #	Description	Size	M. W.	Purity	рН	Storage
GE0201	PNGase F-II	100 units, lyophilized	62,300	> 95%	6.5-7.5 optimal	-20°C, up to 12 months
BA0601	10X Reaction Buffer 2	1 mL			7.0	4 to 25°C

This product is for research use only and not for resale or for any use in the manufacture of a therapeutic or for any diagnostic purpose.

Product description: This product is recombinant PNGase F-II, cloned from *Elizabethkingia meningosepticum* and expressed in *Escherichia coli* with an *N*-terminal 6xHis tag. It catalyzes the cleavage of asparagine-linked oligosaccharides, with or without core fucose, from glycoproteins and glycopeptides. *Unlike PNGase F, which cannot cleave N-glycans with* α 1,3-linked core fucose, PNGase F-II can cleave N-glycans with α 1,6- or α 1,3-linked core fucose.

This product does not contain any detectable activities of proteases or other glycosidases.

Unit definition: One unit is defined as the amount of PNGase F-II required to deglycosylate 1 nanomole (15 μ g) of denatured RNase B or 0.1 nanomole (4.5 μ g) of horse radish peroxidase (HRP) in 2 h at 37°C in 25 μ L 1X Reaction Buffer 2 (50 mM Bis-Tris, 100 mM NaCl, pH 7.0).

Product reconstitution: Dissolve the lyophilized product in 100 μ L molecular grade water to make a 1,000 units/mL solution in storage buffer (20 mM Tris-HCl, 200 mM NaCl, pH 7.5). Once reconstituted, store at 4°C for up to 5 days or -20°C for up to 6 months. Aliquoting is recommended to avoid repeated freeze-thaw cycles.

Suggested protocol for protein deglycosylation:

1. Glycoprotein substrate denaturation:

 $\begin{array}{lll} \text{1.1 Mix the following components in a microfuge tube:} & & & & & \\ & \text{Glycoprotein (e.g., RNase B or HRP; user supplied)} & & & & \\ & 1\% \text{ SDS (user supplied)} & & & & \\ & 0.5 \text{ M }\beta\text{-Mercaptoethanol or DTT (user supplied)} & & & \\ & 10.0 \text{ }\mu\text{L} \\ & 10X \text{ Reaction Buffer 2 (Cat \#BA0601)} & & & \\ & & 10.0 \text{ }\mu\text{L} \\ & & 10.0 \text{ }\mu\text{L} \\ \end{array}$

Molecular grade water $$to\,\,100\,\mu L$$ final volume

1.2 Heat at 98°C for 10 min. Cool to room temperature.

2. PNGase F-II digestion:

 $2.1\,$ Mix the following components in a microfuge tube:

Denatured glycoprotein substrate 2-15 μ g (in 5 μ L or less) 10% Triton X-100 (user supplied) 2.0 μ L 10X Reaction Buffer 2 (Cat #BA0601) 2.5 μ L PNGase F-II (Cat #GE0201) 1.0 μ L (1 units) Molecular grade water to 25 μ L final volume

2.2 Incubate at 37°C for 2 h.

2.3 Analyze by SDS-PAGE mobility shift or other method to determine the extent of deglycosylation.

Reference: Sun G, et al. J Biol Chem. 2015 Mar 20;290(12):7452-62. PMID: 25614628

Note: Reactions may be scaled up to accommodate larger amount and volume of substrate. Titration of enzyme amount and reaction time is recommended for each new substrate. PNGase F-II may remove N-glycans from native glycoproteins at higher enzyme concentration and with longer incubation time. Due to the amount required, PNGase F-II may be visible in gel.